

Optimisation linéaire

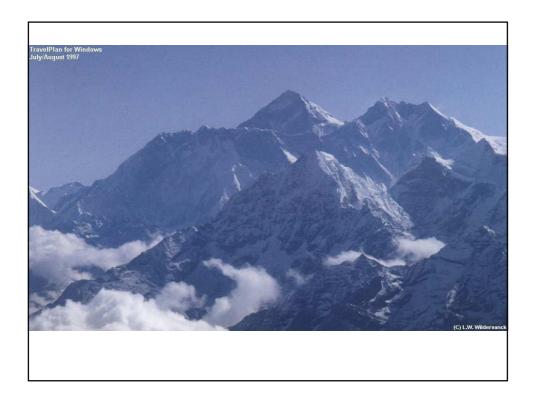
Recherche opérationnelle GC-SIE

La dualité

- Un original offre à un alpiniste un prix lié à l'altitude qu'il peut atteindre : 1F / mètre.
- Cependant, il lui impose de rester en France.
- La solution optimale pour l'alpiniste est de grimper sur le Mont Blanc : 4807m.



- Cependant, l'alpiniste aime la liberté, et n'accepte pas d'être contraint à rester en France.
- L'original accepte de retirer la contrainte, mais à condition que l'alpiniste lui paie une amende pour quitter la France.
- Si le montant de l'amende est trop peu élevé, l'alpiniste à intérêt à grimper sur le Mont Everest : 8848 m.



- Si l'amende est de 4041 F
- Grimper sur le Mont Blanc lui rapporte 4807 F
- Grimper sur le Mont Everest lui rapporte 8848
 F 4041 F = 4807 F
- L'alpiniste n'a donc plus intérêt à violer la contrainte du problème de départ.

Dualité Michel Bierlaire 7

Introduction

Modélisation:

- x = position
- f(x) = altitude
- a(x) = amende si on est en x.
- Premier problème :
 - max f(x)
 - sous contrainte x ∈ France
- Second problème :
 - $\max f(x) a(x)$
 - sans contrainte

• Soit le programme linéaire

s.c.
$$x + y = 1$$

$$x, y \ge 0$$

- Solution : x = 0, y = 1
- Coût optimum: 1
- On introduit un prix p associé à la contrainte x + y =
 1.

Dualité Michel Bierlaire 9

Introduction

min
$$2x + y + p (1 - x - y)$$

s.c. $x,y \ge 0$

Notes:

- Violer la contrainte n'est pas nécessairement pénalisant.
- La solution de ce problème ne peut pas être moins bonne que celle du problème initial.

min
$$2x + y + p (1 - x - y)$$

s.c. $x,y \ge 0$
 $p = 0$
min $2x + y$
s.c. $x, y \ge 0$
Solution : $x = y = 0$.

Coût optimum : 0

Dualité Michel Bierlaire 11

Introduction

 Dans ce cas, on a intérêt à violer la contrainte du problème initial pour obtenir un meilleur coût.

min
$$2x + y + p (1 - x - y)$$

s.c. $x,y \ge 0$
 $p = 2$
min $2x + y + 2 - 2x - 2y = -y+2$
s.c. $x, y \ge 0$

Solution : $y = +\infty$, x quelconque.

Coût optimum : $-\infty$.

Dualité Michel Bierlaire 13

Introduction

- Dans ce cas, le problème devient non borné.
 Le prix est certainement non adapté.
- Situation à éviter.
- Comment ? En mettant des contraintes sur les prix.

min
$$2x + y + p (1 - x - y)$$

s.c. $x,y \ge 0$
 $p = 1$
min $2x + y + 1 - x - y = x+1$
s.c. $x, y \ge 0$

Solution : x = 0, y quelconque.

Coût optimum: 1.

Dualité Michel Bierlaire 15

Introduction

- Dans ce cas, quelque soit la valeur de y, pas moyen d'obtenir un coût meilleur que le coût optimal du problème initial.
- La contrainte n'est plus « contraignante ».
- Il n'y a aucun avantage à la violer.

Idée:

- Supprimer des contraintes pour simplifier le problème.
- Affecter des prix à la violation de ces contraintes.
- Interdire les prix qui rendent le problème non borné.

Dualité Michel Bierlaire 17

Introduction

- Si c* est le coût optimum du problème de départ.
- Si g(p) est le coût optimum du problème relaxé avec le prix p.
- On a toujours $g(p) \le c^*$.
- La situation est donc plus avantageuse.
- On désire trouver les prix pour que l'avantage lié à la relaxation des contraintes soit minimal.
- On doit donc trouver p qui maximise g(p).

• Soit le programme linéaire

- Il est appelé le problème primal.
- Le problème relaxé est

$$\min c^T x + p^T (b - Ax)$$
 s.c. $x \ge 0$

Dualité

Michel Bierlaire

19

Le problème dual

- Soit g(p) le coût optimal du problème relaxé.
- Soit x* solution optimale du problème primal.

$$\begin{array}{ll} g(p) \; = \; \min_{x \geq 0} \left[c^T x + p^T (b - Ax) \right] \\ & \leq \; c^T x^* + p^T (b - Ax^*) \\ & \leq \; c^T x^* \end{array}$$

Dualité

Michel Bierlaire

$$g(p) \le c^T x^* \forall p$$

- La solution du problème relaxé ne peut pas être moins bonne que la solution du problème primal.
- On veut maintenant calculer le prix tel que g(p) soit maximal.
- En programmation linéaire, on arrive à trouver p* pour que

$$g(p^*) = c^T x^*$$

Dualité Michel Bierlaire 2

Le problème dual

- Si on choisit p* comme prix pour le problème relaxé, il n'y a plus aucun intérêt à violer les contraintes.
- Résoudre le problème relaxé est donc équivalent à résoudre le problème primal.
- Question : comment déterminer p* ?

$$\begin{array}{ll} g(p) \ = \ \min_{x \geq 0} \left[c^T x + p^T (b - Ax) \right] \\ = \ p^T b + \min_{x \geq 0} (c^T - p^T A) x \end{array}$$

Le problème

min (
$$c^T-p^TA$$
) x

est trivial à résoudre :

Si $(c^T-p^TA) \ge 0$, alors min $(c^T-p^TA) x = 0$

Sinon, $\min (c^T - p^T A) x = -\infty$

cas à éviter

Dualité

Michel Bierlaire

23

Le problème dual

 Pour éviter le cas trivial où le problème est non borné, on impose

$$(c^T-p^TA) \ge 0$$

• c'est-à-dire

$$p^TA \le c^T$$

• ou encore

$$A^Tp \le c$$

Dualité

Michel Bierlaire

• Le problème devient donc

 $max p^Tb$ s.c. $A^Tp \le c$

- Il s'agit d'un programme linéaire.
- Il est appelé le problème dual.

Dualité Michel Bierlaire 25

Le problème dual

Primal	Dual		
min c ^T x	max p ^T b		
s.c. $Ax = b$	s.c. $A^Tp \le c$		
x ≥ 0			

Note:

• Le rôle des vecteurs c et b est échangé

Définition:

• Les variables p représentant le prix sont appelées les variables duales.

 Considérons maintenant le problème primal min c^Tx

s.c.
$$Ax \leq b$$

$$x \ge 0$$

Introduisons les variables d'écart

s.c.
$$Ax + y = b$$

$$x, y \ge 0$$

Dualité Michel Bierlaire 2

Le problème dual

• Sous forme matricielle, on peut écrire

$$\min \ \left(\begin{array}{c} c^T \big| \mathbf{0} \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right)$$
 s.c.
$$\left(\begin{array}{c} A \big| I \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) = b$$

$$x,y \geq \mathbf{0}$$

Dualité

Michel Bierlaire

• On obtient le problème

 $\min d^{T}z$

s.c. Fz = b

 $z \ge 0$

avec

- $z^T = (x^T \mid y^T)$
- $d^T = (c^T \mid 0)$
- F = (A | I)

Dualité

Michel Bierlaire

29

Le problème dual

• Problème dual

max p^Tb

s.c. $F^Tp \le d$

avec

- $d = (c \ 0)^T$
- F = (A ¦ I)

Dualité

Michel Bierlaire

Primal	Dual
min c ^T x	max p ^T b
s.c. $Ax \le b$	s.c. $A^Tp \le c$
$x \ge 0$	p ≤ 0

Note:

• En présence de contraintes d'inégalité, il faut imposer une contrainte de signe sur les prix.

Dualité Michel Bierlaire 31

Le problème dual

 Considérons maintenant le problème primal

$$\begin{aligned} & \text{min } c^T x \\ & \text{s.c.} \, Ax = b \\ & \quad x \in \, IR^n \\ & \text{et calculons son dual.} \end{aligned}$$

$$\begin{split} g(p) &= \min_{x \in \mathbb{R}^n} \left[c^T x + p^T (b - Ax) \right] \\ &= p^T b + \min_{x \in \mathbb{R}^n} (c^T - p^T A) x \end{split}$$

Le problème

Sinon,

min (c^T-p^TA) x

est trivial à résoudre :

Si $(c^T-p^TA) = 0$, alors

 $\min (c^T - p^T A) x = 0$

 $min (c^{T}-p^{T}A) x = -\infty$

Dualité Michel Bierlaire

Le problème dual

 Pour éviter le cas trivial où le problème est non borné, on impose

$$(c^T-p^TA)=0$$

• c'est-à-dire

$$p^{T}A = c^{T}$$

ou encore

$$A^{T}p = c$$

• Le problème devient donc

$$\max p^{T}b$$
 s.c. $A^{T}p = c$

Primal	Dual	
min c ^T x	max p ^T b	
s.c. $Ax = b$	s.c. $A^Tp = c$	
$x \in IR^n$		

Dualité Michel Bierlaire 35

Le problème dual

Résumé:

- On dispose d'un vecteur de prix p (les variables duales).
- Pour chaque p, on peut obtenir une borne inférieure sur le coût optimal du primal.
- Le problème dual consiste à trouver la meilleure borne.
- Pour certains p, la borne est $-\infty$, et n'apporte donc aucune information pertinente.

Résumé (suite):

- On maximise uniquement sur les p qui produisent une borne finie.
- C'est ce qui génère les contraintes du problème dual.
- A chaque contrainte du primal (autres que les contraintes de signe) est associée une variable duale.

Dualité Michel Bierlaire 37

Le problème dual

- Soit A une matrice
- Notons a_i les lignes de la matrice
- Notons A_i les colonnes de la matrice

PRIMAL

DUAL

$$\begin{array}{llll} \min c^T x & \max p^T b \\ \text{s.c.} & a_i^T x & \geq & b_i & i \in M_1 \\ & a_i^T x & \leq & b_i & i \in M_2 \\ & a_i^T x & = & b_i & i \in M_3 \\ & & x_j & \geq & 0 & j \in N_1 \\ & & x_j & \leq & 0 & j \in N_2 \\ & & & x_j & \in & \mathbb{R} & j \in N_3 \\ \end{array} \quad \begin{array}{ll} \max p^T b \\ & p_i & \geq & 0 & i \in M_1 \\ & p_i & \leq & 0 & i \in M_2 \\ & p_i & \geq$$

Dualité Michel Bierlaire

Le problème dual

PRIMAL	min	max	DUAL
contraintes	≥ b _i	≥ 0	
	$\leq b_i$	≤ 0	variables
	= b _i	libre	
variables	≥ 0	≤ c _j	
	≤ 0	$\geq \mathbf{c_j}$	contraintes
	libre	= c _j	

Exemple

• Passer du primal au dual

$$\begin{array}{lll} \min x_1 + 2x_2 + 3x_3 & \max 5p_1 + 6p_2 + 4p_3 \\ \text{s.c.} & -x_1 + 3x_2 & = 5 & p_1 & \in \mathbb{R} \\ 2x_1 - x_2 + 3x_3 & \geq 6 & p_2 & \geq 0 \\ & x_3 & \leq 4 & p_3 & \leq 0 \\ x_1 & \geq 0 & -p_1 + 2p_2 & \leq 1 \\ & x_2 & \leq 0 & 3p_1 - p_2 & \geq 2 \\ & x_3 & \in \mathbb{R} & 3p_2 + p_3 & = 3 \end{array}$$

Dualité Michel Bierlaire

Exemple

- Transformer le problème obtenu.
- C'est un programme linéaire

Exemple

• Calculer le dual du dual

Dualité Michel Bierlaire 43

Exemple

• Transformer le problème

C'est le problème de départ.

- Soit un programme linéaire P. Soit D son dual.
 Le dual de D est le programme P.
- Le dual du dual est le primal.

Dualité Michel Bierlaire 45

Le problème dual

• Considérons le problème suivant

Primal		Dual	
min c [⊤] x		max p ^T b	
s.c. Ax ≥ b	M_1	s.c. p ≥ 0	
x∈IR	N_3	$A^{T}p = c$	

 Introduisons les variables d'écart dans le primal, et déterminons le dual

Primal		Dual	
$min c^Tx + 0^Ty$		max p ^T b	
s.c. $Ax-y = b$	M_3	s.c. p∈IR	
x∈IR	N_3	$A^{T}p = c$	
y ≥ 0	N_1	-p ≤ 0	

 Remplaçons maintenant les variables du problème original par des variables positives : x=x⁺-x⁻

Dualité Michel Bierlaire 47

Le problème dual

Primal		Dual	
$\min c^{T} x^{+} - c^{T} x^{-}$		max p ^T b	
s.c. Ax+-Ax-≥ b	M_1	s.c. p ≥ 0	
x ⁺ ≥ 0	N_1	$A^Tp \le c$	
x ⁻ ≥ 0	N_1	$-A^Tp \le -c$	

Les trois problèmes primaux sont équivalents Les trois problèmes duaux sont équivalents

- Si l'on transforme un programme linéaire P₁
 en un programme linéaire P₂ en appliquant
 une suite de transformations des types
 suivant :
- Remplacer une variable libre par la différence de deux variables non négatives.

Dualité Michel Bierlaire 4

Le problème dual

- 2. Remplacer une contrainte d'inégalité par une contrainte d'égalité impliquant des variables d'écart non négatives.
- 3. Si une ligne de la matrice A d'un problème en forme standard est une combinaison linéaire des autres lignes, éliminer la contrainte d'égalité correspondante.

Alors, le dual de P₁ et le dual de P₂ sont équivalents.

Théorème de dualité faible

- Si x est une solution admissible du problème primal.
- Si p est une solution admissible du problème dual.
- Alors

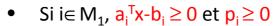
$$p^Tb \le c^Tx$$

Dualité Michel Bierlaire

Théorèmes de dualité

• Soit

$$u_i = p_i(a_i^Tx-b_i)$$



- Si $i \in M_2$, $a_i^T x b_i \le 0$ et $p_i \le 0$
- Si $i \in M_3$, $a_i^T x b_i = 0$ et p_i quelconque
- Donc

$$u_i \ge 0$$
, $\forall i$

Dualité Michel Bierlaire

• Soit

$$v_i = (c_i - p^T A_i) x_i$$

- Si $j \in N_1$, $c_i p^T A_i \ge 0$ et $x_i \ge 0$
- Si $j \in N_2$, $c_j p^T A_j \le 0$ et $x_j \le 0$
- Si $j \in N_3$, $c_i p^T A_i = 0$ et x_i quelconque
- Donc

$$v_j \ge 0$$
, $\forall j$

Dualité

Michel Bierlaire

Théorèmes de dualité

$$\begin{aligned} u_i &= p_i(a_i^Tx - b_i) \\ v_j &= (c_j - p^TA_j)x_j \\ \Sigma_i \ u_i &= p^TAx - p^Tb \\ \Sigma_j \ v_j &= c^Tx - p^TAx \\ 0 &\leq \Sigma_i \ u_i + \sum_j v_j &= p^TAx - p^Tb + c^Tx - p^TAx \\ 0 &\leq c^Tx - p^Tb \\ p^Tb &\leq c^Tx \end{aligned}$$

53

Corollaires

- Si le coût optimal du primal est -∞, aucun p ne peut vérifier p^Tb ≤ c^Tx.
 Le problème dual est donc non admissible.
- Si le coût optimal du dual est +∞, aucun x ne peut vérifier p^Tb ≤ c^Tx.
 Le problème primal est donc non admissible.

Dualité Michel Bierlaire 5:

Théorèmes de dualité

Corollaire

- Soit x solution admissible du primal, et p solution admissible du dual.
- Supposons que $c^Tx = p^Tb$.
- Alors x est solution optimale du primal et p est solution optimale du dual.

• Pour tout y primal admissible, on a

$$p^Tb \le c^Ty$$
.

• Or, $p^Tb = c^Tx$. Donc,

$$c^Tx \leq c^Ty$$
,

- et x est optimal.
- Pour tout q dual admissible, on a

$$q^Tb \le c^Tx$$
.

• Or, $p^Tb = c^Tx$. Donc,

$$q^Tb \le p^Tb$$
,

• et p est optimal.

Dualité

Michel Bierlaire

57

Théorèmes de dualité

Théorème de dualité forte

- Si un programme linéaire possède une solution optimale,
- Alors
 - son dual également et
 - les coûts optimaux respectifs sont égaux.

Dualité

Michel Bierlaire

 Considérons le problème en forme standard

$$\begin{array}{ll} \min \ c^T x \\ \text{s.c.} \ Ax = \ b \\ x \ge \ 0 \end{array}$$

- Supposons que A soit de rang plein.
- Appliquons la méthode du simplexe avec la règle de Bland.

Dualité Michel Bierlaire 5

Théorèmes de dualité

• La méthode du simplexe se termine avec une solution optimale x et une matrice de base associée B.

$$x_B = B^{-1}b$$

• Les coûts réduits sont non négatifs

$$c^T - c_B^T B^{-1} A \ge 0^T$$
.

• Soit p tel que

$$p^T = c_B^T B^{-1}$$

Dualité

Michel Bierlaire

$$c^{T}-c_{B}^{T}B^{-1}A \ge 0^{T}$$

$$c^{T}-p^{T}A \ge 0^{T}$$

$$p^{T}A \le c^{T}$$

$$A^{T}p \le c$$

• p est admissible pour le problème dual

$$max p^Tb$$

s.c. $A^Tp \le c$

Michel Bierlaire

Dualité

61

Théorèmes de dualité

• De plus,

$$p^{T}b = c_{B}^{T}B^{-1}b = c_{B}^{T}x_{B} = c^{T}x.$$

- Par le corollaire précédent, p est solution optimale du problème dual.
- Ainsi, le résultat est vrai pour
 - les problèmes en forme standard
 - dont la matrice A est de rang plein.

- Pour les autres problèmes, on peut toujours :
 - supprimer les lignes de A correspondant aux contraintes redondantes,
 - transformer le problème en forme standard.
- On a vu que le dual du problème ainsi transformé est équivalent au dual du problème initial. Le résultat reste donc valable.

Dualité Michel Bierlaire 63

Théorèmes de dualité

Note:

 En prenant p^T = c_B^TB⁻¹, la condition d'optimalité du primal

$$c^T - c_R^T B^{-1} A \ge 0^T$$

devient

$$c^{T}-p^{T}A \ge 0^{T}$$
 ou $A^{T}p \le c$,

la condition d'admissibilité du dual.

- Pour un problème de programmation linéaire, exactement une des possibilités suivantes peut exister :
 - Il y a une solution optimale.
 - Le problème est non borné.
 - Le problème est non admissible.
- Cela donne 9 combinaisons pour le primal et le dual.
- Par les théorèmes de dualité, certaines d'entre elles sont impossibles.

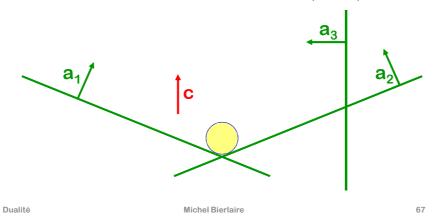
Dualité Michel Bierlaire

Théorèmes de dualité

		Primal		
		Optimum fini	Non borné	Non admissible
	Optimum fini	Possible	Impossible	Impossible
Dual	Non borné	Impossible	Impossible	Possible
	Non admissible	Impossible	Possible	Possible

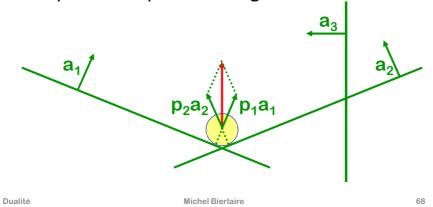
Exemple

• Considérons une balle contrainte à rester dans un polyèdre défini par les contraintes $a_i^T x \ge b_i$.



Exemple

 A l'optimum, les forces appliquées par les « parois » équilibrent la gravité.



Exemple

• A l'optimum, on a donc

$$c = \sum_{i} p_i a_i, p_i \ge 0$$

- Comme les forces ne s'appliquent qu'aux parois en contact avec la balle, on a
 - soit $p_i=0$
 - soit b_i - a_i ^Tx = 0
- Donc $p_i(b_i-a_i^Tx)=0$ ou $p_ib_i=p_ia_i^Tx$.

Dualité Michel Bierlaire 69

Exemple

- On obtient
- $p^Tb = \sum_i p_i b_i$ = $\sum_i p_i a_i^T x$ = $c^T x$
- p est donc une solution optimale du problème dual.

Ecarts complémentaires

Théorème des écarts complémentaires

 Soit x et p des solutions admissibles du primal et du dual (resp.) Les vecteurs x et p sont des solutions optimales des deux problèmes respectifs si et seulement si

$$p_i(a_i^Tx-b_i) = 0 \quad \forall i$$

 $(c_i^-p^TA_i)x_i = 0 \quad \forall j$

Dualité Michel Bierlaire 7

Ecarts complémentaires

· Pour le théorème de dualité faible, on avait

$$u_i = p_i(a_i^T x - b_i), u_i \ge 0$$

$$v_j = (c_j - p^T A_j) x_j, v_j \ge 0$$

$$c^T x - p^T b = \sum_i u_i + \sum_i v_i$$

• Si x et p sont optimales, alors

$$\begin{split} & \Sigma_{\rm i} \ u_{\rm i} + \Sigma_{\rm j} \ v_{\rm j} {=} 0 \\ \text{et donc } u_{\rm i} {=} 0, \ \forall {\rm i \ et} \ v_{\rm j} {=} 0, \ \forall {\rm j} \end{split}$$

Ecarts complémentaires

• Si $u_i=0$, $\forall i$ et $v_j=0$, $\forall j$, alors $c^Tx = p^Tb$.

Par le théorème de dualité forte, x et p sont donc optimales.

Dualité Michel Bierlaire 73

Exemple

• Primal:

min
$$13x_1 + 10x_2 + 6x_3$$

s.c. $5x_1 + x_2 + 3x_3 = 8$
 $3x_1 + x_2 = 3$
 x_1 , x_2 , $x_3 \ge 0$

Dual:

Dualité Michel Bierlaire

Exemple

- x*=(1,0,1) solution optimale du primal.
- Construisons la solution optimale duale à partir des conditions des écarts complémentaires.
- La condition

$$p_{i}(a_{i}^{T}x^{*}-b_{i})=0$$

est vérifiée car x* est primal admissible.

• La condition

$$(c_j - p^T A_j)x_j = 0$$

est vérifiée pour j=2.

Dualité Michel Bierlaire 75

Exemple

• Pour j=1, cette condition devient

$$5p_1+3p_2=13$$
.

Pour j=3, elle devient

$$3p_1=6$$
.

Ces deux conditions donnent

$$p_1=2$$
 et $p_2=1$.

- · Cette solution est dual admissible.
- Le coût dual est 19, comme le coût primal.

Variables duales et coûts marginaux

 Considérons un problème en forme standard

$$\begin{array}{ll} \min \ c^T x \\ \text{s.c.} \ Ax = b \\ x \geq 0 \end{array}$$

- A est de rang plein
- x* est solution de base optimale non dégénérée
- B est la matrice de base correspondante

Dualité

Michel Bierlaire

77

Variables duales et coûts marginaux

- On a $x_B = B^{-1}b > 0$.
- Remplaçons b par (b+d), où d est une petite perturbation.
- Si d est suffisamment petit, on a

$$B^{-1}(b+d) > 0.$$

• La même base B donne donc une solution de base admissible pour le problème perturbé.

Dualité

Michel Bierlaire

Variables duales et coûts marginaux

• De plus, les coûts réduits

$$c^T - c_R^T B^{-1} A$$

ne sont pas affectés par la perturbation.

- B est donc aussi une base optimale pour le problème perturbé.
- Si p est solution optimale du dual, le coût optimal du problème perturbé est

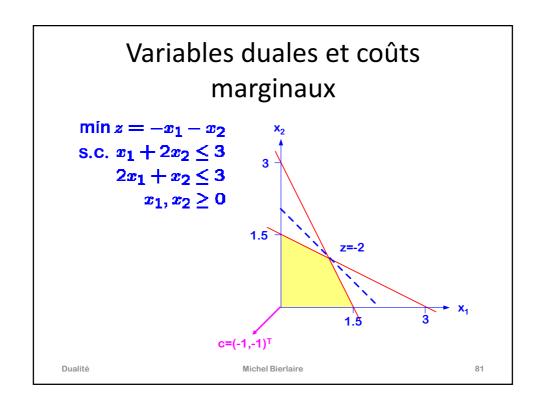
$$c_B^TB^{-1}(b+d)=p^T(b+d)=p^Tb+p^Td=$$

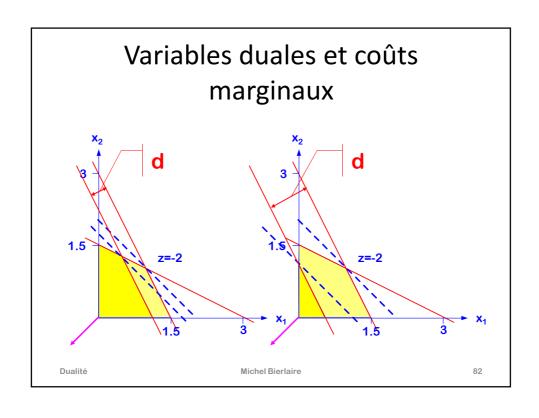
$$c^Tx^*+p^Td$$

Dualité Michel Bierlaire

Variables duales et coûts marginaux

• Les valeurs optimales des variables duales peuvent donc être interprétées comme les coûts marginaux d'une petite perturbation du membre de droite b.





Variables duales et coûts marginaux

Notes:

• On perturbe la contrainte

$$2x_1 + x_2 \le 3$$

 Lorsque d est petit, les deux contraintes actives à la solution sont

$$2x_1 + x_2 = 3 - d$$

$$x_1 + 2x_2 = 3$$

comme dans le problème original.

• La base optimale est donc la même.

Dualité Michel Bierlaire 83

Variables duales et coûts marginaux

 Lorsque d est grand, les deux contraintes actives à la solution sont

$$2x_1 + x_2 = 3-d$$

 $x_1 = 0.$

- La base optimale a changé.
- On ne peut plus utiliser les variables duales pour calculer la différence de coût.